
J. Fluid Mech. (2000), vol. 405, pp. 243–268. Printed in the United Kingdom

c© 2000 Cambridge University Press

243

Shear flow over a self-similar expanding
pulmonary alveolus during rhythmical breathing

By S. H A B E R1†, J. P. B U T L E R2, H. B R E N N E R3,
I. E M A N U E L1 AND A. T S U D A2

1 Department of Mechanical Engineering, Technion, Haifa 32000, Israel
2 Department of Environmental Health, Harvard School of Public Health,

Boston, MA 02115, USA
3 Department of Chemical Engineering, Massachusetts Institute of Technology,

Cambridge, MA 02139–4307, USA

(Received 30 October 1996 and in revised form 9 June 1999)

Alternating shear flow over a self-similar, rhythmically expanding hemispherical de-
pression is investigated. It provides a fluid-mechanical model for an alveolated respi-
ratory unit, by means of which the effect of lung rhythmical expansion on gas mixing
as well as aerosol dispersion and deposition can be studied. The flow is assumed to
be very slow and governed by the quasi-steady linear Stokes equations. Consequently,
superposition of the following two cases provides an easy route toward characterizing
the aforementioned flow field. The first case treats the flow field that is generated
by a rhythmically expanding spherical cap (the alveolus). The cap is attached at its
rim to a circular opening in an expanding unbounded plane bounding a semi-infinite
fluid region. The rate of expansion of the cap and the plane are chosen such as to
maintain the system’s configurational self-similarity. The second case addresses the
flow disturbance that is generated by an alternating shear flow encountering a rigid
hemispherical cavity in a plane bounding a semi-infinite fluid domain.

For the first case, a stream-function representation employing toroidal coordinates
furnishes an analytical solution, whereas the second case was solved numerically by
Pozrikidis (1994). Linear superposition of the two flow cases results in particularly
rich streamline maps. In the symmetry plane (bisecting the cap and parallel to the
mean shear flow), for a certain range of shear to expansion-rate ratios, the streamline
maps are self-similar and display closed orbits and two internal stagnation points.
One of the stagnation points is a ‘centre’ surrounded by closed streamlines whereas
the other constitutes a ‘saddle point’. For other planes, no stagnation points exist in
the field, but the streamlines associated with the saddle point display complex looping
patterns. These unique flow structures, when subjected to a small perturbation (e.g. a
small asynchrony between ductal and alveolar entering flows) cause highly complex
stochastic particle trajectories even in the quasi-static Stokes alveolar flow. The
observed irreversible flow phenomena in a rhythmically expanding alveolus may be
partially responsible for the ‘stretch-and-fold’ flow mixing patterns found in our recent
flow visualization studies performed in excised animal lung acini.

† Author to whom correspondence should be addressed.
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Figure 1. The pulmonary alveolated airways (Rodriguez et al. 1987).

1. Introduction
The fluid-dynamical problem addressed in this paper was motivated by the search

for insight into transport phenomena occurring deep within the lungs. Though the
backbone of the paper consists of an analytic investigation of a flow model of an
expanding alveolus, the rationale behind its choice requires elucidation. Thus, two
main themes govern this physiological introductory section. First, the physiological
background leading to the mathematical model eventually employed is addressed.
Second, a brief overview is provided of existing solutions of several closely related
fluid dynamical problems.

Aerosol transport and deposition phenomena in the lung airways and terminal
airspaces are governed both by the anatomy of the respiratory tract and by the
local velocity field of the gas associated with rhythmical breathing. In the pulmonary
acinus† (figure 1), the airways that become progressively more and more highly
alveolated function in an expanding and contracting mode occasioned by breathing.
Within the acinus, care must be taken to differentiate between the kinematic motion
of the alveolar ducts and the alveoli proper. The former act as the terminal conduit
for gas flow, whereas the latter are closed-end sacs bounded by the alveolar septa
engaged in gas exchange. Typical length scales associated with ductal diameters and
alveolar diameters are roughly the same, namely a few hundred microns, depending
on species (although it is interesting to note that there exists only a very weak
dependence of alveolar size on body mass as the latter ranges over some five orders

† The pulmonary acinus is the basic alveolar unit of the lung. Normally, alveolation occurs from
around the 16th bifurcation of the respiratory tract (Haefeli-Bleuer & Weibel 1988).
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of magnitude from shrew to elephant). Due to the very rapid increase of net bronchial
cross-sectional area with distance down the tracheo-bronchial tree, linear velocities in
the terminal air units are less than a few cm s−1 in humans. As the kinematic viscosity
of air is about 0.17 cm2 s−1, this results in Reynolds number estimates of substantially
less than unity. Accordingly, creeping-flow analyses are appropriate for flow in the
pulmonary acinus.

During breathing, alveoli and alveolar ducts expand and contract in a manner
roughly consistent with geometric similarity, namely all dimensions, apart from septal
thickness, scale approximately as the 1

3
power of lung volume. This fact has been

shown in lung specimens fixed at a variety of lung volumes by intravascular perfusion
(Gil & Weibel 1972; Gil et al. 1979; Weibel 1986), and with motion of pleural markers
in unfixed preparations (Ardila, Horie & Hildebradt 1974). More recently, Miki et al.
(1993) have shown that approximate geometric similarity exists in pulmonary surface-
to-volume ratios in living animals, but that there is also a small but systematic degree
of geometric hysteresis associated with breathing.

To date, apart from the gross effects of overall ventilation, little attention has been
paid to the effect of velocity profiles within rhythmically expanding and contracting
acini on gas exchange and aerosol deposition. In the case of gas exchange, the details
of acinar flow are unlikely to be critical, since the time scale for diffusive transport
in this region is of the order of a few milliseconds, which, being much faster than
breathing periods, implies little effect of flow patterns per se on gas transport.

The case of aerosol transport, by contrast, is quite different. Here particles range
in size from submicron to many microns. As such, they may cross streamlines and
deposit on alveolar surfaces due to inertial crossing of curved streamlines, gravita-
tional sedimentation or by Brownian motion (Brain, Blanchard & Sweeney 1989).
Consequently, the fluid velocity profiles and concomitant streamline characteristics
play a significant role in the fate of such particles. Tsuda, Butler & Fredberg (1994a, b)
found that aerosol transport and deposition patterns were very sensitive to certain
aspects of the alveolated geometry, including the ratio of alveolar to central channel
volume, the opening size of the alveoli, and the alveolar surface area per unit volume.
These authors analysed particle trajectories for the case of fine particles crossing
streamlines under the influence of Brownian motion, and separately for larger aerosol
particles undergoing gravitational sedimentation. These findings were later confirmed
by a similar alveolar duct model (Darquenne & Paiva 1996).

With the exception of the investigations by Davidson & Fitz-Gerald (1972), Tsuda,
Henry & Butler (1995a), and Tsuda, Otani & Butler (1999), the previous studies
cited have focused almost entirely on elucidating velocity profiles or streamlines in
rigid-walled structures, using a variety of architectural features to mimic the essential
static geometric features of the pulmonary acinus. But as argued above, especially
in the case of aerosol transport, the dynamic effects of periodic wall motion may
play an important role in lung aerosol deposition phenomena. Accordingly the major
goal of this paper is to characterize streamlines in a geometric model that captures
the dual features central to acinar transport, namely periodic wall motion (that is
approximately self-similar) and alternating shear flow within the alveolated ducts.

The pulmonary acinus depicted in figure 1 suggests that a single alveolus may be
approximated geometrically by a spherical cap attached at its rim to the alveolar duct
(see also Gil et al. 1979). If the alveolus diameter is smaller than that of the central
duct, the model configuration can be further simplified to include a spherical cap
attached at its rim to a flat surface (see figure 2), a geometric configuration which
is tractable to analysis in toroidal coordinates. Moreover, even in cases where the
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Figure 2. The spherical-cap model of a respiratory unit.

alveolus and duct diameters are of comparable size, use of this geometry promises that
the flow structure inside the alveolus is likely to represent a more faithful portrayal of
real events than in previous models. Even employing the full unsteady Navier–Stokes
equations, Tsuda et al. (1995a) also obtained the result that the flow structure hardly
changes with time. Accordingly, the quasi-static Stokes equations (Happel & Brenner
1983) provide an accurate description of the flow field. Under these conditions, linear
superposition of the following two cases provides an easy route towards characterizing
the flow field within a rhythmically expanding alveolar duct: Case A – the flow field
generated by a rhythmically expanding alveolus; Case B – alternating shear flow over
a plane wall containing a hemispherical depression.

A similar flow was analysed by Tsuda et al. (1995a), for an axisymmetric alveolar
duct configuration and non-zero Reynolds number. The duct consisted of a centrally
circular thoroughfare surrounded by a toroidal alveolus. It performed a reversible,
oscillatory, self-similar stretching movement. The full Navier–Stokes equations were
numerically solved to obtain the rhythmically expanding non-zero low-Reynolds-
number flow field. Under certain conditions, a saddle point was found near the
alveolar opening and pathlines in the alveolus exhibited chaotic features. It remained
unclear whether the latter was due entirely to the non-zero, but small Reynolds
number assumed by Tsuda et al. (1995a) or whether these effects would persist
even in quasi-static Stokes flows. Accordingly, we are also interested in verifying
whether chaotic pathlines appear in our zero-Reynolds-number flow model. If so,
such knowledge would greatly simplify future research on the effect of the various
phenomenological coefficients on the appearance of chaos, since Stokes flows are
easier to analyse than unsteady Navier–Stokes flows.

Problems closely related to that of an expanding alveolus are encountered in
a wide variety of applications to many fields of science and engineering. These
include direct-contact heat exchange, liquid-membrane technology, bubble boiling
phenomena, coalescence of living cells, and oil or raindrop coalescence.

Theoretical studies of particular interest in the present context are the works of
Avedisian & Andres (1978) on the partially engulfing evaporation of a liquid drop, of
Schneider, O’Neill & Brenner (1973) on the rotational motion generated by a partially
immersed sphere, of Davis (1982) on the force exerted by a two-phase Stokes flow



Shear flow over an expanding pulmonary alveolus 247

on a sphere which symmetrically straddles the interface, of Vuong & Sadhal (1989)
on the growth and translation of a liquid vapour compound drop, and of El-Kareh
& Secomb (1996) who obtained an analytical solution for the flow impinging on a
spherical cap on a plane wall. They employed toroidal coordinates and the Mehler–
Fock transform (fully described in Sneddon 1972) that underlies the mathematical
analysis to obtain creeping-flow solutions for various boundary configurations and
conditions. An exact analytical solution that employs a stream function representation
was first suggested by Payne & Pell (1960). A technique similar to that of Vuong &
Sadhal (1989) was employed in the present work to solve case A, albeit with some
significant modifications. Case B was addressed by Pozrikidis (1994) who applied a
mixed analytical and numerical approach to obtain the shear flow over a rigid cavity
in the form of a spherical cap.

The paper is divided into three parts. Section 2 treats case A of the flow generated
by a rhythmically expanding alveolus. An analytical solution is obtained and the
streamline pattern is calculated for various alveoli rim/plane angles η0.

Section 3 addresses the combined effect of rhythmical expansion and alternating
shear (cases A + B) and a streamline pattern is calculated for various values of
expansion to shear-rates ratios.

Section 4 provides a brief discussion on the dynamical system governing the
trajectories of massless particles immersed in the flow field of cases A + B for a
hemispherical cavity. It also addresses the implications of the unique streamline maps
in relation to possible chaotic trajectories of the particles reaching the lung periphery,
and particle deposition data and its significance to lung physiology.

2. A rhythmically expanding alveolus (Case A)
2.1. Statement of the problem

Suppose that a spherical cap of radius R is attached at its rim to a circular opening
of radius a in an infinite plane. During the rhythmical process of expansion and
contraction the half-conical angle η0 (see figure 2) is held constant for all times. Since
this maintains the configuration in a self-similar mode, the rate Ṙ at which the radius
changes also governs the rate at which the plane expands laterally; explicitly, the
radial velocity component of the plane is given by ρṘ/R. Here, ρ denotes the radial
coordinate in the circular cylindrical system (ρ, φ, z), its origin being located at the
centre of the rim. The flow dynamics are governed by the quasi-static Stokes equation,

µ∇2v = ∇p, (1)

for incompressible fluids,

∇ · v = 0. (2)

Boundary conditions for a flow adhering to the moving boundaries of the cap and
the plane are, respectively,

vP/A = vP/O + vO/A = Ṙir + ḣiz = Ṙir + Ṙ cos η0iz

= Ṙ[ir(1 + cos θ cos η0)− iθ sin θ sin η0]r=R, (3)

vQ/A = Ṙ
ρ

R
iρ, (4)
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where vP/A denotes the relative velocity of a general point P lying on the sphere
with respect to point A, the latter assumed to be at rest. The origin of the spherical
coordinate system (r, θ, ϕ) is located at the centre of the spherical cap, with ϕ and θ
representing the azimuthal and latitudinal angles, respectively. Here, ir and iθ denote
unit vectors in the indicated directions. The velocity, vQ/A, of a general point Q lying
on the plane with respect to point A possesses only a radial component which grows
linearly with respect to the distance of Q from A so as to maintain a uniform radial
rate of strain in the alveolar tissue. Clearly, vP/A and vQ/A are identical at the rim.
The flow field far from the cap and the plane is assumed to vanish.

2.2. Method of solution

Polar toroidal coordinates (ξ, η, φ) are well suited to the problem configuration. A
description of this system is provided by Happel & Brenner (1983). We define

z = a
sin η

cosh ξ − cos η
, ρ = a

sinh ξ

cosh ξ − cos η
(0 6 η 6 2π, 0 6 ξ < ∞), (5)

where the spherical cap is given by η = η0 < π. The axis of symmetry is given by
ξ = 0, whereas the plane with the central circular hole corresponds to η = 2π.

Boundary conditions (3) and (4) are now rewritten to yield

vη = −Ṙ sin2 η0

s

s− t0
vξ = −Ṙt0 sin η0

sinh ξ

s− t0

 at η = η0, (6)

vη = 0

vξ = −Ṙ sin η0

sinh ξ

s− 1

 at η = 2π (7)

where we used the abbreviated symbols

s = cosh ξ, t = cos η, t0 = cos η0, (8)

and where vξ and vη are the velocity components in the ξ- and η-directions, respec-
tively.

Since the problem is axisymmetric, a stream function ψ̃ can be defined satisfying
the continuity equation (2) identically:

vξ = − (s− t)2

R2 sin2 η0 sinh ξ

∂ψ̃

∂η
, (9a)

vη =
(s− t)2

R2 sin2 η0 sinh ξ

∂ψ̃

∂ξ
. (9b)

Consequently, the Stokes equation (1) for ψ̃ is reduced to (Payne & Pell 1960)

L2
−1ψ̃ = 0, (9c)

where

L−1 =
∂2

∂ρ2
− 1

ρ

∂

∂ρ
+

∂2

∂z2
. (9d)
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Upon rewriting boundary conditions (6) and (7) in terms of the stream function,
and integrating with respect to ξ, we obtain

[ψ]η= η0
= sin η0

[
1

s− t0 +
t0

2(s− t0)2

]
+ β, (10)

[
∂ψ

∂η

]
η= η0

=
t0 sinh2 ξ

(s− t0)3
, (11)

[ψ]η= 2π = β, (12)[
∂ψ

∂η

]
η= 2π

=
sinh2 ξ

(s− 1)3
, (13)

where the non-dimensional stream function ψ is defined as

ψ = ψ̃/R2Ṙ sin3 η0. (14)

Equation (14) is totally devoid of time-dependent terms. The constant of integration
β was chosen such that

β = − (2− t0) sin η0

2(1− t0)2
, (15)

so that ψ vanishes along the symmetry axis ξ = 0 (s = 1). Obviously, ψ = β for
ξ → ∞ (the circular line at z = 0, ρ = a defining the rim), whence β provides the
non-dimensional volumetric flow rate at which fluid enters the spherical cap.

2.2.1. Stream function representation

Payne (1958) and later Payne & Pell (1960) point out that a useful stream-function
representation in toroidal coordinates may depend crucially upon the specific bound-
ary geometry involved. To quote them ‘A combination suitable for one problem may
be completely intractable for another’. Indeed the following solution representation
seems to be appropriate to our specific problem:

ψ =
sinh2 ξ sin η

(s− t)3
− sin η0(2− t0)

2(1− t0)2

[
1−

(
1− t
s− t

)3/2
]

+ ψh, (16)

where ψh possesses a representation similar to one suggested by Payne & Pell (1960),
and Vuong & Sadhal (1989). Explicitly,

ψh = (s− t)−3/2 sinh2 ξ

∫ ∞
0

Fh(α, η)P ′−1/2+iα(s) dα (17)

where

Fh(α, η) = cos η

[
A(α)

cosh [(2π− η)α]

cosh [(2π− η0)α]
+ B(α)

sinh [(2π− η)α]

sinh [(2π− η0)α]

]
− sin η

[
C(α)

cosh [(2π− η)α]

cosh [(2π− η0)α]
+ D(α)

sinh [(2π− η)α]

sinh [(2π− η0)α]

]
. (18)

Here, A(α), B(α), C(α) and D(α) are unknown functions of α to be determined by
application of the boundary conditions. Clearly, the functions of α and η multiplying
A(α), B(α) etc. are all less than or equal to unity, since the solution domain is confined
to the region η0 < η < 2π where η0 < π. The function P ′−1/2+iα(s) is the derivative with

respect to s of the Legendre function of complex degree, P−1/2+iα(s) (see Abramowitz
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& Stegun 1965 and Zhurina & Karmazina 1966, the latter providing a comprehensive
overview of this function and its derivatives).

The first term of (16) is the well-known solution for ideal-fluid stagnation flow,
which can easily be shown to satisfy Stokes equations with no effect on the pressure
field. It also exactly satisfies the boundary conditions on the stretching plane. The
first term within the square brackets is simply a constant, representing the value of ψ
at the corner which must be equal to the total volumetric flow through the expanding
spherical cap β. The second term in square brackets represents the Stokes flow through
a circular aperture (Happel & Brenner 1983) rewritten in toroidal coordinates.

It proves useful to establish an integral representation of the first term in (16)
and the second term in the square brackets. Explicitly, we seek expressions for the
functions Fp1 and Fp2, appearing in the following integral equations:

sinh2 ξ(s− t)−3/2

∫ ∞
0

Fp1(α, η)P ′−1/2+iα(s) dα =
sin η sinh2 ξ

(s− t)3
(19a)

and

sinh2 ξ(s− t)−3/2

∫ ∞
0

Fp2(α, η)P ′−1/2+iα(s) dα = −β
(

1− t
s− t

)3/2

. (19b)

From (A 1) and (A 2) in the Appendix we obtain

Fp1(α, η) = −2
√

2 sin η
cosh [(η − π)α]

cosh (πα)
, (20a)

Fp2(α, η) = β
(1− t)3/2α

α2 + 1
4

tanh (πα). (20b)

Hence, another useful representation of ψ is

ψ = β + (s− t)−3/2 sinh2 ξ

∫ ∞
0

[Fh(α, η) + Fp1(α, η) + Fp2(α, η)]P ′−1/2+iα(s) dα. (21)

Equations (16) and (21) will be used interchangeably.

2.2.2. The solution for A(α), B(α), C(α) and D(α)

Upon introducing (16) into (12) we easily obtain

ψh(α, 2π) = 0

or, from (17),

Fh(α, 2π) = 0. (22)

Substitution of (16) into (13) yields

∂ψh

∂η
= 0 at η = 2π

or, from (22) and (17),

∂Fh(α, η)

∂η
= 0 at η = 2π. (23)

Introduce (21) into (10) and utilize the inversion formulas provided in the Appendix
to obtain, after some lengthy computations,

Fh(α, η0) =
4 sin η0√

2

α2

α2 + 1
4

cosh [(η0 − π)α]

cosh (πα)
+

t0√
2

α

α2 + 1
4

sinh [(π− η0)α]

cosh (πα)

def≡ E(α, η0). (24)
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Similarly, upon substituting (21) into (11), and using (10) together with the inversion
formulas in the Appendix, we obtain

∂Fh

∂η
(α, η0) = −2

√
2α sin η0

sinh [(η0 − π)α]

cosh (πα)
− 3√

2
sin η0

α

α2 + 1
4

sinh [(η0 − π)α]

cosh (πα)

+
3√
2

t0

sin η0

α

α2 + 1
4

1

cosh (πα)

×{α sin η0 cosh [(η0 − π)α] + cos η0 sinh [(η0 − π)α]}
def≡ G(α, η0). (25)

Introduction of (22), (23), (24) and (25) into (18) yields the following expressions for
the unknown coefficients:

A(α) = 0, (26a)

B(α) = −−G sin η0 + E{cos η0 − α sin η0 coth [(2π− η0)α]}
1− α2 sin2 η0/sinh2[(2π− η0)α]

, (26b)

C(α) = −αB coth [(2π− η0)α] (26c)

and

D(α) = −E(1 + α2) sin η0 + G{cos η0 + α sin η0 coth [(2π− η0)α]}
1− α2 sin2 η0/sinh2[(2π− η0)α]

. (26d)

Thus, for a given value of η0, upon using (26a–d) together with the definitions of E
and G in (24), (25) and (16)–(18), the stream function ψ can be calculated at any
position (ξ, η).

2.3. Results and discussion (Case A)

Flow field considerations. It is important to validate convergence of the integral
representation (16), especially to demonstrate that no infinite velocities exist in the
solution domain. The functions E and G defined in (24) and (25) decay exponentially
like exp (−αη0) and α exp (−αη0) respectively, for large values of α, and algebraically
like O(α2) for small values of α. The behaviour of B, C and D defined in (26) is quite
similar. For large values of α they decay like αn exp (−αη0) (n > 2), whereas for small
values of α their decay is algebraic.

The Legendre polynomials are of order α1/2 for large values of α and possess a zero
value for α = 0. Hence, integration with respect to α poses no convergence problem
over the entire domain of integration even for the worst case, when η = η0. Practically,
the integration can be carried out over a domain whose upper bound is given by any
value of α that satisfies the inequality α2 � exp (αη0).

The solution for ψh converges even faster for values of η lying inside the domain
η0 < η < 2π (η = η0 being the worst case) as can easily be verified from (18).

Convergence of velocities in the vicinity of the spherical cap is easily verified. (Note
that far from the cap the velocity grows linearly due to the self-similar boundary
condition imposed on the flat surface). From (9) and the expression for ψ in (17),
the velocity for large values of ξ can be determined from the fact that P ′−1/2+iα(s) =

O(e−3/2ξ) whence ψh = O(e−ξ). Therefore, the velocities at the cap rim (ξ →∞) possess
a finite value (which could be zero if so required by the boundary conditions). On
the other hand, for small values of ξ, P ′−1/2+iα(s) = O(1) and ψh = O(ξ2), whence

the velocities are of order ξ, i.e. are finite in value (which could again be zero, if
so required). Accordingly, the proposed solution converges everywhere within the
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(a) (b)

(c) (d )

Figure 3. Streamline maps for half-conical angles (a) η0 = 30◦, (b) η0 = 60◦, (c) η0 = 90◦,
(d) η0 = 120◦.

solution domain as a consequence of the addition of the first two explicit terms
in (16).

The subsequent inversions used, namely (A 3)–(A 5), each possess a very slowly
theoretically converging integral term (the one including tanh (πα)). However, the
representation suggested in (16) eliminates all of these particular terms and facilitates
the fast converging results for E and G (unlike those obtained by Vuong & Sadhal
1989, who still had to circumvent this difficulty in their analysis for two expanding
vapour bubbles). Without the first term of (16) a solution could not practically be
achieved. The second term of (16), which appears to possess no divergent properties
of its own, is also required to speed up convergence.

In the vicinity of the hemispherical cap the velocity is always finite (figure 3).
However, infinite velocities arise far from the cap owing to the infinite velocities
specified at the far end of the plane. Figures 3(a) to 3(d) each depict streamlines
obtained from (16)–(17) for various values of η0. Each streamline represents a constant
value of ψ, which is equally incremented in the streamline map. The results show that
the flow rate near the symmetry axis is small compared with that in the rim region.
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For small η0, a sharp directional change of the streamline entering the corner
occurs. Larger aerosol particles with some inertia may not be able to follow those
sharp streamlines so that their deposition sites are likely to accumulate closer to the
axis, whereas small inertialess particles which could move along the curved streamlines
tend to deposit close to the rim (Haber & Tsuda 1998).

3. Alternating shear flow over an expanding alveolus
Steady shear flow over a plane wall that possesses a rigid cavity in the form of

a spherical cap was studied by Pozrikidis (1994) employing a numerical boundary
integral method. Based upon normal breathing frequencies, the Womersley numbers
that prevail in the lung periphery are much smaller than unity. Consequently, the
solution vshr obtained by Pozrikidis (that is defined for unity depression radius R and
unit shear rate) can be utilized to solve the quasi-steady problem for alternating shear
rates G(t) and combined with the time-dependent flow generated by the alveolus
expansion Ṙ(t)vexp , namely

v = Ṙvexp + RGvshr . (27)

The non-dimensional components of vexp are derived from (9) and (14) for η0 = 90◦:

(vξ)
exp = −sinh ξ(cosh ξ cos η − 2 sin2 η − 1)

(cosh ξ − cos η)2
− 3

2
sin η tanh (ξ/2)

(
1− cos η

cosh ξ − cos η

)1/2

+
3

2

sin η sinh ξ

(cosh ξ − cos η)1/2

∫ ∞
0

F(α, η)P ′−1/2+iα(cosh ξ) dα

− sinh ξ(cosh ξ − cos η)1/2

∫
∂F(α, η)

∂η
P ′−1/2+iα(cosh ξ) dα, (28a)

(vη)
exp =

sin η(− cosh2 ξ − 2 cos η cosh ξ + 3)

(cosh ξ − cos η)2
− 3

2

(1− cos η)3/2

(cosh ξ − cos η)1/2

+
(cosh2 ξ − 4 cosh ξ cos η + 3)

2(cosh ξ − cos η)1/2

∫ ∞
0

F(α, η)P ′−1/2+iα(cosh ξ) dα

+ sinh2 ξ(cosh ξ − cos η)1/2

∫
F(α, η)P ′′−1/2+iα(cosh ξ) dα (28b)

where π/2 < η < 2π.
The time-periodic functions RG and Ṙ possess identical periodicities and almost

similar shapes (Miki et al. 1993). The ratio of Ṙ to RG increases as we go deeper
into the acinus, eventually approaching infinity at the acinar end. Streamlines for the
combined velocity field v, (27), can be obtained from the following non-dimensional
expression:

v′ = λvexp + vshr , (29)

where λ(t) = Ṙ/RG. (Notice that (29) is used instead of the actual combined ve-
locity field (27) to emphasize that the streamline maps depend only upon the two
non-dimensional parameters λ and η0). Alternatively, in terms of the instantaneous
volumetric flow Qt inside an alveolated airway, the instantaneous volumetric flow
entering the alveolus Q, the instantaneous radii R and Rt of the alveolus and the
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Figure 4. Streamline map for the shear flow over a hemispherical cavity (from Pozrikidis 1994).
No expansion of alveolar walls is assumed (λ0 = 0). (a) A three-dimensional view of the streamline
map in the alveolar cavity; the dotted line, lying on the (y, z)-plane (x = 0), indicates a stagnation
line which connects the ‘centres’ of recirculating eddies in the alveolar cavity. (b) A streamline map
on the symmetry plane (y = 0).

airway, respectively

λ(t) =
Ṙ

RG
≈ Q

8Qt

R3
t

R3
. (30)

3.1. Results and Discussion (Cases A+B)

It is important to distinguish between cases in which λ is fixed during breathing (the
ductal and the alveolar flows are synchronized) or time dependent (a small asynchrony
or phase lag exists). For fixed λ, (denoted λ0) the streamline maps remain self-similar
during the entire breathing period and scale with the alveolus radius. Thus, a single
map for, say, R = 1 is sufficient to describe the flow streamlines. Figures 4 to 6
illustrate various streamline maps for different but time-independent (fixed) λ values.

Figure 4(a, b) depicts the case λ = 0 that corresponds to a rigid-wall alveolus.
In this case, addressed by Pozrikidis (1994), a dividing surface exists that separates
the outer flow field from the eddy existing inside the alveolus. Figure 4(a) shows
a three-dimensional view of the streamline map, where the dotted line that lies on
the (y, z)-plane indicates a stagnation line which connects the ‘centres’ of apparent
recirculating eddies in the alveolar cavity. Figure 4(b) illustrates a two-dimensional
view of the streamlines at the y = 0 plane. It clearly shows the dividing surface and
the single stagnation point surrounded by closed streamlines. It should be noted that
the stagnation line remains fixed in space during the entire breathing period.

For non-zero values of λ (figures 5 and 6), however, the whole streamline map
topology is changed. For λ as small as 0.0025, the dividing surface observed in the
case of λ = 0 vanishes and two instantaneous stagnation points are formed at the
symmetry plane y = 0 (figure 5a). One point is found close to the alveolus centre
(x ≈ −0.4R) while the other is positioned very near to the proximal end of the alveolar
opening (x ≈ −0.92R). The first is surrounded by a closed rotating streamline, whereas
the second is a saddle point, i.e. a singular point where a pair of streamlines move
in, at the same time another pair of streamlines move away, and these streamlines
are connected, forming a closed orbit on the (x, z) symmetry plane. A third pair of
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streamlines connected with the saddle point, but not lying on the (x, z)-plane (see
figure 6), is either directed toward the alveolus boundary when inhaling or inward
(toward the saddle point) when exhaling. Note that the third pair of streamlines
undergoes extremely rapid divergence (or convergence) (see thick black lines in the
inset of figure 6) near the saddle point, suggesting a highly unstable flow field in the
vicinity of the saddle point (see also thin black lines in the inset of figure 6). Both
‘centre’ and ‘saddle points’ on the symmetry plane are not fixed in space but move
periodically during breathing as R varies periodically with time. A similar streamline
map topology is observed for λ = 0.005 (figure 5b) where the two instantaneous
stagnation points move closer together with increasing λ. The centre moves further
away from the alveolus centreline and closer to the proximal end of the alveolar
opening (x ≈ −0.54R) and the saddle point moves slowly away from the proximal
end (x ≈ −0.9R). For higher values of λ, say λ = 0.01, 0.05 (figure 5c, d), the saddle
point and the centre disappear altogether, and a streamline map similar to that of the
expansion case prevails (e.g. figure 3). Consequently, for 0 < λ < 0.01 two stagnation
points exist inside the whole alveolar space (although their location is not fixed in
space) whereas for λ > 0.01 no stagnation points exist (the value λ = 0.01 has only
two digits of accuracy).

Streamline maps that were obtained by Tsuda et al. (1995a) for axisymmetric flow
fields also depicted that under certain conditions saddle points were obtained near the
proximal end of the alveolar opening; in that case they form a continuous concentric
line of points.

In summary, we observe that within the alveolar cavity for non-zero λ, the symmetry
plane is the only surface that may possess two instantaneous stagnation points, namely
locations where all of the three velocity field components vanish. It also should be
noted that in the present work saddle points exist only for the combined flows
generated by the joint shear and the expansion motions of the alveolus during the
breathing process.

When λ is time-dependent, one may expect all of the foregoing topologically
different streamline maps to exist during a single breathing period. Indeed, it was
inferred in Tsuda et al. (1999) based on surface-to-volume data of Miki et al. (1993)
that the alveolar and ductal flows are normally asynchronized (roughly 10◦ magnitude)
and as a result λ varies from zero to infinity during a single period. Thus, the slight
movement of the saddle point during breathing can give rise to stochastic trajectories
even in the quasi-static character of Stokes flow. This will briefly be illustrated in the
next section.

4. A remark on stochastic trajectories of massless particles

Particle trajectories differ markedly from the streamline maps because trajectories
follow the temporally evolving streamline map rather than one at some particular
time. This is equivalent to the observation that the velocity field v is explicitly a
function of time in computation of the trajectories.

4.1. Particle trajectories

Trajectories rp(t) of massless particles are governed by the time-dependent equation
(27), namely

drp
dt

= Ṙvexp(rp/R(t)) + RGvshr (rp/R(t)) and rp = rp0 at t = 0. (31)
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Figure 5. Streamline maps for the combined shear and expansion flows (λ0 6= 0). The flow field in
the vicinity of a saddle point is depicted in the close-up figures: (a) λ0 = 0.0025; (b) λ0 = 0.005, (c)
λ0 = 0.01; (d) λ0 = 0.05. In (a, b) two stagnation points are formed, in (c, d) no stagnation points
are formed.

Note that since the quasi-steady velocity fields vexp and vshr were obtained for
a unit radius hemisphere, particle location must be normalized with respect to the
instantaneous radius of the alveolus R(t). Physiologically, a small phase difference
may exist between Ṙ and RG. It is common (albeit not exact) to assume that
R = R0(1 + κ cos (ωt)), Ṙ = −ωR0κ sin (ωt) and RG = −R0G0 sin (ωt+ δ), where ω is
the breathing frequency, R0 is the mean radius of the alveolus, R0κ is the expansion
amplitude of the alveolus, G0 denotes the shear rate depending on the breathing
volumetric flow and the alveolus location down the acinar tree, and δ stands for
the phase angle. It is important to note that in this case the ratio λ(t) = Ṙ/RG =
(κω/G0 sin (ωt)/ sin (ωt+ δ) is not fixed during breathing due to the phase angle δ (a
fact that will prove to be significant in the possible occurrence of stochastic pathlines).

Equation (31) can be slightly simplified by the following scaling of the radius vector
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solid lines). Dashed lines show the streamlines on the symmetry plane associated with the stagnation points. λ0 = 0.0025. (b) Details of streamline
map in the vicinity of the saddle point. The streamlines escaping the saddle point undergo extremely rapid directional changes; one (arrow head)
immediately ends on the alveolar walls near the proximal end of alveolar opening, the other (arrow) circles many times in the alveolar cavity (near
the alveolar walls) before finally ending on the alveolar wall a far distance from the saddle point. The complex streamline structure near the saddle
point is also shown (thin solid lines).
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variable, and the time:

r̂p = rp/R(t), τ = ln (R(t)/R0) (32)

to yield

dr̂p
dτ

= vexp(r̂p) + vshr (r̂p)/λ(τ)− r̂p. (33)

In what follows, we will treat the case where κ = 0.1, ω/G0 = 0.025 and δ = 2◦,
10◦, corresponding to the proximal region of the acinus, and describe trajectories on
and off the symmetry planes.

Particles on the symmetry plane A particle initially located on the symmetry plane,
yp (t = 0) = 0, remains there and does not mix with particles outside the symmetry
plane (and vice versa) since the velocity component in the y-direction dyp/dt on that
plane vanish for all times. Their trajectories in the (x̂p, ẑp) plane are governed by the
following equations:†

dx̂p
dτ

= vexp
x (x̂p, ẑp) + vshr

x (x̂p, ẑp)/λ(τ)− x̂p,
dẑp
dτ

= vexp
z (x̂p, ẑp) + vshr

z (x̂p, ẑp)/λ(τ)− ẑp.

 (34)

This two-dimensional system is not autonomous, since τ appears explicitly, and
therefore permits the appearance of stochastic trajectories (Wiggins 1990).

A fourth-order Runge–Kutta method was employed to solve numerically a non-
dimensionalized equation (31) where R0 was used to scale lengths, 1/ω to scale time
and R0ω to scale velocities. Convergence was achieved for a time step value of
0.001. The velocity field components were calculated only once at approximately 104

evenly spaced locations inside the alveolus. Linear interpolation was used to calculate
velocity components for in-between locations. Figure 7(a) illustrates a Poincaré map
of a single particle placed initially at xp0 = −0.35, zp0 = 0.5 for the δ = 2◦ case.
Particle location was sampled after every period (2π) for 1000 periods. Evidently, a
clear outline of a quasi-periodic torus is obtained which also validates the numerical
scheme accuracy. It must be noted that a Poincaré map of the same particle trajectory
for the δ = 0 case appears as a single point revisited after every breathing cycle in
accordance with the following proof (that was yet another measure that we applied
to verify the accuracy of the numerical scheme). Note that, if δ = 0, the ratio λ(t)
becomes time independent and equation (34) is an autonomous two-dimensional set
of equations and hence integrable (Whittaker 1937). Thus, at the transformed (x̂p, ẑp)-
plane, particle trajectories are determined by a function of ẑp, x̂p and a free constant
of integration. Hence, from equation (32), in the real (xp, zp)-plane, massless particle
trajectories would exhibit periodic behaviour, sampling the same position after every
breathing period 2π/ω. A Poincaré map for the whole symmetry plane is illustrated
in figure 7(b) for the δ = 2◦ case. Regions of stochasticity seem to appear bounded

† Symmetry of vexp and vshr with respect to the y = 0 plane implies that ∂vy/∂y = 0 at y = 0.
Consequently, the continuity equation possesses the form ∂vx/∂x̂+ ∂vz/∂ẑ = 0 at y = 0. However,
since ∂vx/∂x + ∂vz/∂z = (∂vx/∂x̂ + ∂vz/∂ẑ)/R = 0 a stream function ψ can be defined in the real
(xp, zp)-plane. Thus, for the symmetry plane, equation (31) can in principle be rewritten as follows:

dxp
dt

=
∂ψ(xp, zp, t)

∂zp
,

dzp
dt

= −∂ψ(xp, zp, t)

∂xp
. (35)

Obviously, equation (35) is a Hamiltonian, volume (area)-conserving dynamical system, a fact
that also proved useful in checking the accuracy of the numerical scheme.
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Figure 7. For caption see facing page.

by quasi-periodic surfaces. It is important to note that the observed stochastisity is
part of the intrinsic dynamics of the system, and not due to an unpredictable random
influence such as particle diffusion. Thus, the assertion that stochastic trajectories may
exist for zero Reynolds numbers is here validated.
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Figure 7. (a) A Poincaré map of a single particle placed initially at xp0 = −0.35, zp0 = 0.5. Particle
location was sampled after every period (2π) for 1000 periods. A clear outline of a quasi-periodic
torus is obtained. (b) A Poincaré map for points initially placed on the symmetry plane. All particle
locations were sampled after every period (2π) for 500 periods. Regions of stochasticity seem to
appear bounded by quasi-periodic surfaces. (c) and (d) A Poincaré map for points initially placed
at y = −0.3. All particle locations were sampled after every period (2π) for 500 periods. Regions of
stochasticity seem to appear bounded by quasi-periodic surfaces. In cases (a) and (b) λ0 = 0.0025
and δ = 2◦. In cases (c) and (d), λ0 = 0.0025 and δ = 10◦.
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This may also resolve the open question raised by Tsuda et al. (1995a) of whether
their findings of stochastic trajectories stem solely from non-zero Reynolds-number
effects or it is an inherent property of the flow existing for zero-Reynolds-number
flows as well.

Particles off the symmetry plane A particle initially positioned off the symmetry plane
would generally outline a three-dimensional rotating pathline inside the alveolar
space, but never cross the symmetry plane. The governing equations are given by (31),
and due to the fact that the shear and expansion velocity fields satisfy the continuity
equation the dynamical system is volume conserving. In the case δ = 0, the flow is
periodic owing to the reversibility property of Stokes’ flows. Thus a Poincaré map
of a trajectory appears as a single point revisited. Figure 7(c) illustrates a Poincaré
map of particles initially located at y = −0.3 and δ = 10◦. A careful examination of
the Poincaré map reveals islands of quasi-periodic orbits even for small values of the
phase angle. It is interesting to note that the points do not stay on the y = −0.3 plane
and occupy a three-dimensional space (unlike the axisymmetric case dealt with by
Tsuda et al. (1995a) where points remain confined to their azymuthal plane). Almost
all points near the streamline that extends from the centre at the y = 0 plane remain
in a nicely bounded volume and do not move far into neighbouring spaces inside the
alveolar cavity. This was also validated in the next section where the extent of mixing
inside the cavity is briefly addressed.

4.2. A note on the extent of mixing in the alveolar cavity

According to Ottino (1989) mixing is directly related to the rate of strain and vorticity
that exist inside the flow. In this paper, we limit our analysis to the relative magnitude
of mixing at various points inside the alveolus. First, one must exclude any periodic
flows since their contribution to mixing is null. Thus, for synchronized alveolar and
acinar flows where δ = 0 no mixing can be expected. Second, if, however, as indeed
observed, the acinar and alveolar flows are asynchronized we may expect mixing to
occur.

The extent of mixing can be scaled if we consider the strain tensor based on the
Poincaré mapping. In other words, instead of calculating the rate of strain based on
the velocity field we calculate the relative displacement that adjacent particles undergo
after a complete breathing cycle. We used four adjacent points forming a corner of
a cubic test-cell whose sides are parallel to the (x, y, z) coordinate system. The points
are dx(i) apart (i = 1, 2, 3) and are released. Their new position after a single period
is monitored. Their relative displacement du(i) = dx(i) (t = 2π) − dx(i)(t = 0) is then
computed and the modified ‘velocity gradient’ ε tensor (per unit time of a single
period) can be derived from the following equation:

du(i) = dx(i) · ε. (36)

Equation (36) provides three equations for every i for the nine unknown components
of ε. Thus, ε can easily be obtained from

ε = {dx(1), dx(2), dx(3)}−1{du(1), du(2), du(3)}. (37)

The resulting ‘strain’ tensor D and ‘rotation’ tensor Ω are

D = 0.5(ε+ εT ), Ω = 0.5(ε− εT ). (38)

The ‘stretching’ at every point is proportional to the invariant (D :D)1/2 easily com-
puted from the eigen values of D . Application of the above definition of the strain
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eliminates any contribution to D or Ω stemming from periodic flows and we suggest
using it as a simple measure by which the relative extent of mixing at different points
inside the alveolus can be evaluated.

Figure 8 depicts the extent of stretching (D :D)1/2 and rotation (Ω :Ω)1/2 that a
small cubic test cell (of side 0.0204) undergoes after a single breathing cycle for
various positions of the test cell inside the alveolus. Careful examination of stretching
and rotation on the symmetry plane (figure 8a) reveals that, for certain regions inside
the alveolus, the extent of mixing is sensitive to the test-cell initial position. Regions
of highest sensitivity are found near the closed streamline that originates from and
returns to the saddle point at the symmetry plane and the area near the saddle
point (see figure 5a). That fact confirms that stochastic behaviour of a particle placed
initially in these regions is to be expected. Moreover, distinct regions of high and low
values of stretching and rotation can be observed. High values exist invariably near
the above-mentioned closed streamline and the saddle point. Thus, high stochasticity
results in high values of mixing near the alveolus boundaries and close to the proximal
end of the alveolar opening (negative x-values). Stretching can reach four times the
value that exists in the undisturbed shear flow (normalized with respect to ω, the
stretching value in the undisturbed shear flow is G0/2ω = 20).

Similar results are obtained off the symmetry plane (see figure 8b) where high
stretching and rotation values exist near the alveolus boundaries, where the streamlines
originating from the saddle point pass (see figure 6). Stretching and rotation values
off the symmetry plane (figure 8b) are comparable to those at the symmetry plane
(figure 8a). Moreover, in some places near the space adjacent to the saddle point on
the off-symmetry plane stretching and rotation are even higher than at the symmetry
plane y = 0 itself. This may be due to the contribution of the additional component of
the velocity gradient in the y-direction (see figure 6). Smaller stretching and rotation
values are observed in the region near the streamline that escapes the ‘centre’ towards
the boundaries of the alveolus. This is also in good agreement with our previous
conclusions deduced from the streamline maps.

4.3. Physiological considerations

Deposition of inhaled particles in the pulmonary acinus often has physiological and
pathophysiological consequences. In this context, it is crucial to understand how
aerosol particles are transported within the acinus and mix with residual alveolar gas
because deposition is strongly influenced by mixing.

Several experimental studies show the complexity of aerosol mixing processes in
the acinus. Davies (1972) argued that generally little mixing occurs between inhaled
particles and residual alveolar gas, and any mixing that occurs in the acinar region
should be solely due to the particles’ own motion (Brownian motion, gravitational
sedimentation, inertial streamline crossing), since no convective (flow-induced) mixing
is expected at the acinar level. In aerosol bolus dispersion studies, on the other hand,
Heyder and coworkers (Heyder et al. 1988; Anderson et al. 1989; Schulz et al. 1992)
consistently observed that the deeper the bolus penetrated into the acinus, the more
it became dispersed. They concluded that the observed mixing cannot be accounted
for solely by the intrinsic motion of particles, and thus it should be attributable to
flow-induced mixing. These findings strongly suggest that the deposition and mixing
of aerosol particles are largely influenced by convection even at the level of the lung
periphery. Our recent flow visualization studies performed in excised rat and rabbit
lungs revealed extremely complex ‘stretched and folded’ fluid mixing patterns (Tsuda
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et al. 1995b; Butler & Tsuda 1997), confirming the importance of convective mixing
and suggesting the new possibility of a chaotic origin of mixing.

From the theoretical point of view, aerosol kinetics in the acinus have been
considered as follows. A viscous flow is kinematically reversible if the wall motion of
the conduit is reversible (Watson 1974; Taylor 1967). This leads to the notion that
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Figure 8. (a) A stretching and rotation map for points initially placed at y = 0. Here κ = 0.1,
λ0 = 0.0025 and δ = 10◦. Regions of stochasticity seem to appear near the closed streamline
that extends from and returns to the saddle point. Strong mixing is obtained near the alveolus
boundaries close to the proximal end of the alveolar opening. Low values are obtained near the
centre and far from the proximal end. (b) A stretching and rotation map for points initially placed
at y = 0.408, λ0 = 0.0025 and δ = 10◦. Strong mixing is obtained near the alveolus boundaries close
to the proximal end of the alveolar opening. Poor mixing is obtained near the streamline escaping
the centre towards the alveolus boundary.
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acinar flow should be reversible since it is viscous flow (the Reynolds number is much
smaller than unity), and acinar walls expand and contract basically in a geometrically
similar reversible fashion (Gil & Weibel 1972; Ardila et al. 1974; Gil et al. 1979;
Weibel 1986; Miki et al. 1993). This line of thought, therefore, theoretically excludes
the possibility of convective (flow-induced) mixing in the acinar region, contrary to the
experimental results mentioned above. What are the possible mechanisms to explain
mixing observed in the acinus?

Our current theoretical investigations addressing this question mainly focus on the
effects of structural alveolation and cyclic wall motion on aerosol kinetics (Tsuda et al.
1994a, b; 1995a, 1999; and Butler & Tsuda 1997). In particular, studying the influence
of time-dependent geometric expansion of the alveolar walls on flow behaviour, we
have recently discovered that acinar flow can possibly be irreversible despite, its
viscous nature (Tsuda et al. 1995a). In axisymmetric alveolated duct models which
rhythmically expand and contract in a geometric similar manner, we found that the
low-Reynolds-number viscous flow could be complex with a stagnation saddle point
near the alveolar opening, and fluid particle pathlines derived therefrom become
highly complex, irreversible, and unpredictable due to the high sensitivity to initial
conditions, exhibiting phenomena characteristic of chaotic flow (Tsuda et al. 1995a).
In the present study, a Stokes flow in a three-dimensional rhythmically expanding
spherical alveolus with small flow asynchrony also exhibited very similar complex flow
phenomena with essentially the same flow structure as in our previous axisymmetric
model. These two studies, therefore, suggest that viscous acinar flow can exhibit
chaotic behaviour, and thus induce convective mixing if there is a small perturbation
on viscous flow conditions (e.g. small but non-zero Reynolds-number effects) or on
reversible wall motion (e.g. small but non-zero wall hysteresis, asynchrony between
ductal and alveolar entering flows, cardiac motion). Furthermore, the important
geometric features of an acinar airway can be represented as a central convective
channel surrounded by dead-end air pockets.

In summary, we have developed an analytical model of acinar fluid mechanics in a
rhythmically expanding spherical alveolus and its vicinity to elucidate the basic physics
operating on inhaled particles in the lung periphery. Results of this study together
with our previous studies indicate that there is an unexpected level of complexity
of aerosol mixing due to the unique geometric features (structural alveolation and
rhythmic expansion), and suggest that radically new mechanisms of mixing, such as
chaotic mixing, operate in the acinar region.

This research was supported by the Fund for The Promotion of Research at The
Technion (SH), National Heart, Lung and Blood Institute Grant NIH HL-47428
(AT) and NIH HL-33009, HL-54885 (SH+JPB+AT), The Center for Absorption in
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Office of Basic Energy Sciences of the Department of Energy (HB). We are indebted
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cavity.

Appendix

The following Mehler–Fock integral inversions, fully described by Sneddon (1972)
and conveniently summarized in the Appendix of Davis (1982), were required to
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obtain (24) and (25). MacRobert (1948) has shown that

1

(s− t)1/2
=
√

2

∫ ∞
0

cosh [(η − π)α]

cosh (πα)
P−1/2+iα(s) dα (0 < η < 2π). (A 1)

Differentiation of (A 1) with respect to s yields

1

(s− t)3/2
= −2

√
2

∫ ∞
0

cosh [(η − π)α]

cosh (πα)
P ′−1/2+iα(s) dα. (A 2)

From the Appendices of Schneider, O’Neill & Brenner (1973) and Vuong & Sadhal
(1989) (with minor modifications) for the region 0 < η < 2π, we obtain

(s− t)1/2

sinh2 ξ
= −

∫ ∞
0

1

α2 + 1
4

[
α tanh (πα)(1− cos η)1/2 +

1√
2

cosh [(η − π)α]

cosh (πα)

]
×P ′−1/2+iα(s) dα, (A 3)

1

sinh2 ξ(s− t)1/2
=

∫ ∞
0

α

α2 + 1
4

[√
2 sinh [(π− η)α]

sin η cosh (πα)
− tanh (πα)

(1− cos η)1/2

]
P ′−1/2+iα(s) dα,

(A 4)

1

sinh2 ξ(s− t)1/2
=

∫ ∞
0

α

α2 + 1
4

[
2
√

2

sin3 η cosh (πα)
{α sin η cosh [(η − π)α]

+ cos η sinh [(π− η)α]} − tanh (πα)

(1− cos η)3/2

]
P ′−1/2+iα(s) dα. (A 5)
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